The Bipartite Ramsey Numbers b(C2m;K2,2)
نویسندگان
چکیده
Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is the smallest integer b such that any subgraph G of the complete bipartite graph Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14 and b(K3,3;K3,3) = 17. In this paper we study the case H1 being even cycles and H2 being K2,2, prove that b(C6;K2,2) = 5 and b(C2m;K2,2) = m + 1 for m ≥ 4.
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملOn Some Three-Color Ramsey Numbers
In this paper we study three-color Ramsey numbers. Let Ki,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G1, G2 and G3, if r(G1, G2) ≥ s(G3), then r(G1, G2, G3) ≥ (r(G1, G2) − 1)(χ(G3) − 1) + s(G3), where s(G3) is the chromatic surplus of G3; (ii)(k + m − 2)(n − 1) + 1 ≤ r(K1,k,K1,m,Kn) ≤ (k + m − 1)(n − 1) + 1, and if k or m is odd, the second inequ...
متن کاملMono-multi bipartite Ramsey numbers, designs, and matrices
Eroh and Oellerman defined BRR(G1, G2) as the smallest N such that any edge coloring of the complete bipartite graph KN,N contains either a monochromatic G1 or a multicolored G2. We restate the problem of determining BRR(K1,λ,Kr,s) in matrix form and prove estimates and exact values for several choices of the parameters. Our general bound uses Füredi’s result on fractional matchings of uniform ...
متن کاملDegree Ramsey numbers for cycles and blowups of trees
Let H s → G mean that every s-coloring of E(H) produces a monochromatic copy of G in some color class. Let the s-color degree Ramsey number of a graph G, written R∆(G; s), be min{∆(H) : H s → G}. We prove that the 2-color degree Ramsey number is at most 96 for every even cycle and at most 3458 for every odd cycle. For the general s-color problem on even cycles, we prove R∆(C2m; s) ≤ 16s6 for al...
متن کاملNew Lower Bounds on the Multicolor Ramsey Numbers Rr(C2m)
The multicolor Ramsey number rk(C4) is the smallest integer n for which any k-coloring of the edges of the complete graph Kn must produce a monochromatic 4-cycle. In [6] and [3] it was proved that rk(C4) ≥ k2−k+2 for k − 1 being a prime power. In this note we establish rk(C4) ≥ k2 + 2 for k being an odd prime power. ( Journal of Combinatorial Theory, Series B 79, 172–176 (2000))
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011